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'H- and "C-NMR SPECTRA OF CAMPTOTHECIN A N D  DERIVATIVES 

EDWARD L. EZEU and LELAND L. SMITH* 

Deparfiwit of Hrmari Biological Cheiuisrr) and Grnrfirs. Uiiiwrsitj o j  Texas Mrdirzl Branch. 
Galtieston. Texas 77550 

ABSTRACT.-'H- and "C spectra of camptorhecin, 9- and 12-n1trocamptothecins, and 
10.1 I-methylenedioxycamptothecin are assigned from 1D and 2D nmr data. 

There is current interest in the pyr- 
roloquinoline alkaloid camptothecin [l] 
(C2,H 16N203),  its congeners, and its 
synthetic analogues as antitumor agents 
(1) and topoisomerase I inhibitors (2,3). 
Although relevant chemistry is known 
(4-7) and 'H-nmr spectra available, 
only an incomplete "c-nmr spectrum of 
1 was available (8) at the inception ofour 
work. More recently, C spectra of 1 
and 10-hydroxycamptothecin [5] have 
been reported by Lin and Cordell (9), 
with the suggestion that the earlier 'k- 
nmr data for 1 needed revision. 

Reliable assignments of 'H- and most 
C-nmr signals in spectra of 1 may be 

made with direct methods such as the at- 
tached proton test (APT) and homonu- 
clear correlated spectroscopy (COSY). 
However, two pairs of aromatic protons 
(H-9/H- 12, H- 10/H- 1 1) require care in 
assignment, and ten quaternary carbon 
atoms (seven conjugated olefinic or 
aromatic) pose assignment difficulties. 
We present here our unambiguous as- 
signments of 'H and "C spectra of 1 and 
of synthetic 10, l  l-methylenedioxy- 
camptothecin [2], 9-nitrocamptothecin 

IZ 

I 3  

18 

[3], and 12-nitrocamptothecin [4],  
using standard 2D nmr correlation 
methods, and reconcile our data with 
those of the prior literature (8,9). 

EXPERIMENTAL 

SPECTRAL METHODS.-speCtra were ob- 
tained using a JEOL GX270WB Fourier trans- 
form nmr spectrometer operating at 270 MHz for 
' H  and 67.9 MHz for "C,  with internal 
deuterium lock and TMS as internal frequency 
reference and analyte samples in {'H,]-DMSO, 
['HI-TFA, or their 1:3 admixture. Spectra ac- 
quired at 32K data points were zero-filled to 64K 
data p i n t s .  Enhanced resolution of ' H  spectra 
was obtained with a moderate trapezoid apodiza- 
tion. Standard pulse sequences were used for APT 
(10). ZD COSY ( 1  l ) ,  and 'H-"C heteronuclear 
correlated spectroscopy (HETCORR) ( 12) opera- 
tions. For HETCORR spectra 2048 X 256 data 
points were acquired and zero-filled to yield a 
1024 X 5 12 transformed matrix, to which was 
applied a trapezoidal apodization. Pulse delays 
were optimized for one-bond 'H-I'C correlations 
at yLH = 140 Hz and for two- and three-bond 
correlations at ' l jCH 5 ,  7 ,  and 10 Hz. with the 7 
Hz value being of greatest utility. For the least 
soluble samples there were 256 evolution incre- 
ments with 1024 acquisitions per increment (in- 
terpulsr delay 1.0 s), acquired over 83 h. 

Additionally, fully coupled (FUCOUP) (13, 
14) spectra were recorded to establish multiple 
bond connectivities for several quaternary ' 'C 
atoms. Extended 'H- 'H  correlations in spectra of 
1 in DMSO were also explored via the 2D 
HOHAHA (2D MLEV-17) experiment ( 1 5 ) ,  
with isotropic mixing time 256 msec optimal. 
All data were plotted in absolute mode. 

RESULTS AND DISCUSSION 

Nmr data and spectral assignments 
for 1 and derivatives 2 4  in DMSO and/ 
or TFA are summarized in Table 1. Both 
solvents accorded solutions of adequate 
concentration for 2D nmr studies, and 
results in either solvent were mutually 
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TABLE 1. 'H- and 13C-nmr SpectraofCamptothecin 111 and Derivatives 2 4 . "  

Position 

2 . . . . . . .  
3 . . . . . . .  
5 . . . . . . .  
6 . . . . . . .  
7 . . . . . . .  
8 . . . . . . .  
9 . . . . . . .  

10 . . . . . . .  
11 . . . . . . .  
12 . . . . . . .  
13 . . . . . . .  
14 . . . . . . .  
15 . . . . . . .  
16 . . . . . . .  
16a . . . . . .  
17 . . . . . . .  
18 . . . . . . .  
19 . . . . . . .  
20 . . . . . . .  
21 . . . . . . .  
O H  . . . . . .  
CH, . . . . . .  

DMSO 

6, 

152.47 
145.41 
50.21 

129.72 
131.45 
127.87 
128.39 

127.53 
130.26 
128.95 
147.87 
96.59 

149.90 
118.98 
156.73 
65.20 

7.68 
30.28 
72.28 

172.33 
- 
- 

- 
- 

5.266 

8.671 

8.109 ddb 

7.696 dddb 
7.852dddb 
8.155 ddb 

7.338 

- 

- 

- 

- 
- 
- 

5.418 
0.877 t(6.97) 
1.877 q(6.97) 

- 
- 

6.509 
- 

Compound 1 

6, 

147.90 
133.59 
54.14 

140.70 
145.87 
132.31 
132.34 

140.35 
134.37 
122.78 
141.32 
108.27 
153.74 
126.44 
160.64 
69.01 

8.47 
33.97 
76.32 

178.60 
- 
- 

TFA 

- 
- 

5.897 

9.483 

8.503 d(8.06) 

8.441 ~ ( 8 . 0 6 )  
8.232 t(8.06) 
8.534 d (8.06) 

8.411 

- 

- 

- 

- 
- 
- 

5.845 ABq 
1.213 t(7.33) 
2.33q(7.33) 

- 
- 
- 
- 

Observed 
Couplings 

yCHH-5 ,  H-7, H-14 2CH H-14; ycH H-5 
JHH H-7 

2 c H  H-5, H-7 
JHH H-9; ~ C H  H-9 
ycHH-lO,  H-12 vHH H- 10; ycH H-7, 

H-11 

'Signals are singlets unless otherwise designated by abbreviations, d,  doublet; t, triplet; q,  quartet; 
m, multiplet. Observed couplings from two-dimensional COSY, HETCORR, FUCOUP, and 
HOHAHA spectra. All one-bond ( ycH) couplings were observed but not recorded in table. 

bH-9-H- 12 couplings: y9, = 8.06, ylo, = 6.96, y,,, = 8.73, y9, = 1.77, yi0, 12 = 
1.99 Hz. 

confirmatory. Neither residual 'H  nor 
''C signals ofeither solvent interfere, al- 
though the eight-line "C spectrum of 
TFA [ac 116.715 q (yCF 283 Hz), 
164.042 q ('HCF 43.5 Hz)] and seven- 
line ' 'C spectrum of DMSO must be rec- 
ognized. 

All carbon and hydrogen atoms of 1 in 
either solvent are represented by re- 
solved signals. The 'H signals were as- 
signed from chemical shift and multi- 
plicity, with the exception of the 
coupled A-ring aromatic protons and the 
isolated H-5 and H-17 methylene spin 
systems, these assignments being made 
using 2D COSY, HETCORR, and 
FUCOUP spectra, also taking advantage 
of solvent-influenced chemical shifts. 
Our data and assignments of 'H  spectra 

for 1 in DMSO are in agreement with 
previous reports (9,16) with two minor 
differences. Our assignment of the H- 10 
signal at higher field (6, 7.696) and of 
H- 1 1 at lower field (8, 7.852) is oppo- 
site that ofLin and Cordell (9), where H- 
10 at 8, 7.71 and H-11 at 6, 7.31 re- 
verse this order. Additionally, in our 
data the H- 10 and H- 11 signals appear 
as doublet of doublets doubled, thus re- 
vealing weak four-bond couplings with 
the H- 12 and H-9 protons, respectively; 
these couplings have not been previously 
observed. 

Assignments of I3C spectra of 1 in 
either solvent were made from APT and 
2D HETCORR pulse sequences that 
yielded one-, two-, and three-bond con- 
nectivities (Table 1) allowing unam- 
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DMSO 

6, 6, 

15 1.12 - 
146.47 - 
49.84 5.179d(4.60) 

128.12 - 
129.91 8.437 
145.76 - 
102.87 7.483 
156.65' - 
157.62' - 
104.62 7.483 
148.44 - 
95.66 7.234 

149.83 - 
117.92 
158.07 - 
65.09 5.395 

7.46 0.864td 
30.34 1.848md 
72.17 - 

172.10 - 

102.28 6.265 

- 

- - 

TABLE 1. Continued. 

TFA 

6, 6, 

143.30 - 
131.86 - 
53.89 5.718 

131.69 - 
141.68 9.036 
141.67 - 
106.31 7.539 
160.77 - 
160.45 - 
106.14 8.149 
141.27 - 
99.21 7.680 

153.67 - 
124.47 - 
155.31 - 
68.66 5.749ABq 

8.14 1.140 t(7.43) 
33.58 2.151q(7.43) 
76.21 - 

178.42 - 

110.47 6.429 
- - 

Position 

2 . . . . . . .  
3 . . . . . . .  
5 . . . . . . .  
6 . . . . . . .  
7 . . . . . . .  
8 . . . . . . .  
9 . . . . . . .  

10 . . . . . . .  
11 . . . . . . .  
12 . . . . . . .  
13 . . . . . . .  
14 . . . . . . .  
15 . . . . . . .  
16 . . . . . . .  
16a . . . . . .  
17 . . . . . . .  
18 . . . . . . .  
19 . . . . . . .  
20 . . . . . . .  
21 . . . . . . .  
O H  . . . . . .  
CH, . . . . . .  

'May be exchanged. 
d ~ , ~ 3  pattern. 

biguous assignments for all 'C signals. 
Our 13C assignments for thirteen I3C 
signals referenced on solvent DMSO (6, 
39.5) agree acceptably with those of 
Hutchinson et al. (8) similarly refer- 
enced (6, 39.6), and assignment differ- 
ences may be reconciled upon recogni- 
tion that their quaternary C-2 signal at 
6, 156.8 actually must be that of the 
amide carbonyl C- 16a (not reported by 
them), that exchange of their aromatic 
ring C- 11/C- 12 and quaternary C- 13/C- 
15 assignments is indicated, and that it 
be the quaternary C-2 and C-2 1 signals 
that were not observed. 

Both sets of "C data appear 1.0-1.1 
ppm to higher field than data of Lin and 
Cordell referenced on internal TMS (9) .  
W e  have confirmed that the central I3C 
signal of the solvent DMSO spectrum 
with internal TMS, with or without sol- 
ute 1, is at 6,  37.5, which is thus a reli- 

Observed 
Couplings 

YCH H-7 

Y H H  H-7 
7 C H  H-5 

vcH H- 14 

JHH H-9 ycH H- 12 
Y C H  H-7 
Z]CH H-9 

- vHH H- 14 
VcH H-7, H-9 

- 
VCHH-17, H-19 

able reference point. However, the I3C 
spectrum of 1 in Figure 1 ofLin and Cor- 
dell (9) displays solvent DMSO signals 
at field lower than 6,40 in what appears 
to be misregistry ofspectra against inter- 
nal reference TMS, perhaps accounting 
for the observed discepancies. W e  regard 
our data and the adjusted data of Hutch- 
inson et al. (8) as the more reliable mea- 
sures. 

Chemical shifts of 'H and "C signals 
are affected by solvent, with most 'H 
signals of 1 for TFA at lower field rela- 
tive to  DMSO by ASH + 0 . 3  to + 1.0 
ppm. Similarly, 'H signals of 1 0 , l l -  
methylenedioxycamptothecin 121 in 
TFA are at lower field (AZH +0.1 to 
+ 0.6 ppm) than in DMSO. These sol- 
vent shifts are greater than chose re- 
corded for other alkaloids using TFA and 
CDCI, as solvents ( 17) and do not appear 
to be associated with protonation of 
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Compound 3 Compound 4 

Position 

2 . . . . . . . 
3 . . . . . . . 
5 . . . . . . . 
6 . . . . . . . 
I . . . . . . . 
8 . . . . . . . 
9 . . . . . . . 

10 . . . . . . . 

11 , . . . . . . 

12 

13 . . . . . . . 
14 , . . . . . . 
15 . . . . . . . 
16 . . . . . . . 
16a . . . . . .  
17 . . . . . . . 
18 . . . . . . . 
19 . . . . . . . 

20 . . . . . . . 
21 . . . . . . . 
OH . . . . . .  
CH, . . . . . .  

TFA 

147.98 
127.05 
54.11 

140.94 
130.21 
141.60 
150.21 
140.63 

137.04 

131.02 

136.43 
109.37 
153.52 
124.50 
160.35 
68.68 

8.14 
33.73 

76.00 
178.30 

- 
5.946 

10.255 
- 

- 

8.912d 
(9.52) 

8.463 dd 
(8.06, 
9.52) 

(8.06) 
8 .949d 

- 
8.463 

5.825 ABq 
1.189t(7.33) 
2.211d 

(7.33) 

DMSO 

153.69 
144.26 
50.42 

132.56 
126.73 
147.70 
135.53 
128.69 

125.00 

- 

5.324 

9.154 

8.473 d(6.86) 
7.993 dd 

(6.86,8.67) 
8.503 d(8.67) 

- 

- 

- 

145.72 I 
119.88 
97.27 

149.60 
119.88 
156.47 
65.09 

7.47 
30.42 

72.07 
171.94 
- 

- 
7.405 

- 

5.42d(6.43) 
0.919 t(7.44) 
1.886 q(7.44) 

Observed 
Couplings 

vcH H- 17 
V"H-17 
yCHH-17;vCHH-14 
vCHH-17  

YcHH-18 
yCH H- 17 

either nitrogen atom, as neither the 
quinoline nor amide nitrogen of 1 is as 
basic as in some alkaloids. Degraded 
resolution of the H-9 and H- 12 'H sig- 
nals of 1 in TFA is accompanied by im- 
proved resolution of "C signals (except 
for the C-8/C-9 pair), the reverse re- 
lationship being the case for 1 in 
DMSO. 

Proton signal multiplicity was also af- 
fected by solvent in the case of the H- 17 
methylene protons. The signal is a two- 
proton singlet for 1 in DMSO but an AB 
quartet for 1 in TFA. The AB quartet 
was also observed for DMSO solutions of 
1 to which were added traces of CDCI, 

Solvent effects on 'C spectra are more 
diverse, most C signals being de- 
shielded A& + 0.8 to + 7.3  pprn for l 
in TFA relative to DMSO but with C-6, 

I 3  

C-7, C- 10, and C- 14 signals deshielded 
to a greater extend (A& + 11.0 to + 
14.4 ppm) and C-2, C-3, C-12, and C- 
13 signals shielded by ASc -4.6 to 
- 15.5 ppm. Very similar effects were 
observed for I3C spectra of 2, where 
most ' 'C signals were at lower field (Ahc 
+0.6 to + 8 . 2  pprn), except for the 
greater effect on C-7 (ASc + 11.8 ppm), 
and with C-2, C - 3 ,  C-8, C-13, and C- 
16a at higher field (A& - 2.7 to - 15.7 
pprn). Spectra obtained in DMSO-TFA 
(1:3) contained ' H  and ''C signals gen- 
erally between the extremes in neat sol- 
vent and aided in confirmation of assign- 
ments (data not shown). 

In addition to the couplings indicated 
for neat solvent solutions of 1 in Table 1, 
other couplings yCH C- 16/H-17, C- 181 
H-19, and C-20/H-19 and yCH C-151 
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H- 17, C- 15/H- 19, C-20/H- 18, C-2 1/ 
H- 19, and C-2 1/H- 17 were observed in 
the FUCOUP spectrum of 1 in binary 
solvent DMSO/TFA solution. These 
data confirm in detail the assignments 
made otherwise and also establish that 
the ethyl group evinced by 'H count, 
6,, signal multiplicities, and COSY 
correlation of H-18/H-19 is located at 
C-20 unambiguously, a matter not dis- 
closed by other HETCORR data. Yet 
other correlations were observed from 
the HOHAHA spectra of 1. In addition 
to correlations observed by the standard 
means, HOHAHA spectra revealed a 
four-bond ( tJ5 , , )  coupling between H-5 
and H-7 and a five-bond (v,*,,,) cou- 
pling between H-14 and H-17 protons 
as well as hydrogen bonding between the 
20-hydroxyl group and moisture in sol- 
vent DMSO. 

H and "C data and assignments for 
the derivatives 2 4  presented in Table 1 
were made in like manner, H data for 
solutions of 2 and 3 in TFA being in 
satisfactory agreement with those previ- 
ously reported (18). Assignments of 'H 
data for 2 in TFA could be made di- 
rectly, but the H-9 and H-12 signals 
from spectra obtained in DMSO were 
unresolved, yielding a two-proton sin- 
glet at 6, 7.483, thus confounding 
assignment of C-9 and C-12 from one- 
bond ( yCH) correlations. However, "C 
assignments for C-9 and C-12 were 
made from yCH connectivity of H-7 to 
one at 6, 102.87 also coupled by one- 
bond yCH to the two-proton H-9/H- 12 
singlet, thereby identifying C-9 suit- 
ably, with assignment of C- 12 by attri- 
tion. 

Furthermore, for 2 the number of 
quaternary C signals was increased by 
two, thereby posing added limitation 
using our approaches. Although close- 
lying signals of quaternary C- 10 and C- 
11 for TFA solutions may be assigned 
from the ?,, correlation of the 6, 
160.77 signal with H-9, want of unam- 
biguous two- or three-bond connec- 

I 

I 

I S  

tivities in HETCORR spectra for 
DMSO solutions denied unambiguous 
assignment of the quaternary C-10 and 
C-11 signals in those spectra, and the 
values of Table 1 may require exchange. 

Spectra of the 9- and 12-nitro isomers 
3 and 4 were also assigned, with TFA 
the better solvent for 3, DMSO for 4 .  In 
these cases, sufficient 4 was available for 
2D nmr acquisitions, and the couplings 
thereby discovered are listed in Table 1. 
Assignments posed no problems save for 
the degeneracy of the quaternary C-13 
and C-16 signals; however, several ob- 
served connectivities ( YCH for C- 13/H- 
9 and C- 13/H- 11; ZJCH for C- 16/H- 17, 
yCH C- 16/H-14) established the assign- 
ments. Sample availability precluded as- 
signments for 3 from 2D nmr studies, so 
assignments are made by analogy with 1 
and 12-nitro isomer 4 .  In this case as- 
signments of I'c signals for quaternary 
C-3 and C- 16 are uncertain and may re- 
quire exchange. 

Substituent effects on 'H- and "C- 
nmr spectra of 1 are revealed by data for 
2 4  in Table 1 and for 5 in the prior lit- 
erature (9). A-ring oxygen substitution 
shields vicinal H-9 and H-12 of 2 and 
vicinal H-9 of 5 ;  nitro group substitu- 
tions deshield vicinal H- 10 of 3 and vici- 
nal H- 11 of 4 .  Long range effects in- 
clude deshielding of H-7 by the nitro 
group of 3 and 4 but shielding of H- 14 
of 2 in TFA. All A-ring substituents 
deshield the substituted carbon atom by 
large effects (A6, + 16 to + 29 ppm) in 
either solvent, and the oxygen sub- 
stituents of 2 and 5 shield adjacent car- 
bon atoms (A& - 7 to - 27 ppm), all 
consistent with expectations. Nitro sub- 
stituents of 3 and 4 affected adjacent car- 
bon atoms differently, the 9-nitro group 
of 3 deshielding C-8, the 12-nitrogroup 
of 4 shielding adjacent C- 11 and C- 13. 
More remote effects of substitution were 
also observed. For 2 in either solvent the 
C-8 quaternary atom was deshielded; for 
3 C-12 was deshielded and C-13 
shielded; for 4 C-8 and C-9 were de- 
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shielded. Other "C signals were either 
unaffected by substituents or affected to 
a minor degree only. 
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